最近更新:伺服讲座 第8讲|接线与EMC:如何确保伺服系统的稳定性与抗干扰能力
2025-12-07
2025-12-07
2025-12-07
2025-12-07
2025-12-07
浏览量:65 次 发布时间:2025-11-16 18:49 作者:明扬工控商城 下载docx
最近更新:伺服讲座 第8讲|接线与EMC:如何确保伺服系统的稳定性与抗干扰能力
2025-12-07
2025-12-07
2025-12-07
2025-12-07
2025-12-07
伺服电机的输出力矩是驱动机械负载旋转的能力,单位 N·m(牛·米)。 力矩可以理解为“旋转方向的推力”——力 × 半径。
T = F × r
其中 F 为作用力(N),r 为半径(m)。 在旋转系统中,它与角加速度、惯量关系为:
T = J × α
其中 J 为系统总惯量(kg·m²),α 为角加速度(rad/s²)。
实际工作时,电机的输出力矩 Tout 必须 ≥(TL + Ta)。
惯量 J 表示物体对转速变化的“抗拒程度”。惯量越大,加速越慢,控制响应越钝。 它由物体的质量与转动半径决定:
J = m × r²
在伺服系统中,有两个惯量要考虑:
惯量比 = 负载惯量 / 电机惯量:
R = JL / JM
惯量比直接影响伺服系统的动态性能:
| 惯量比范围 | 系统特性 | 说明 |
|---|---|---|
| R ≤ 3 | 响应快,稳定性好 | 理想匹配 |
| 3 < R ≤ 10 | 可稳定运行,需调参 | 中负载系统常见 |
| R > 10 | 响应慢,可能振荡 | 需加减速机构或大电机 |
实际选型建议: 工业设备一般控制在 R ≤ 5;高速点位或精密系统尽量 ≤ 3;若超出,优先加减速机降低惯量。
不同传动结构的负载惯量,需要折算到电机轴。常见结构有丝杠、皮带轮、齿轮、直连等。
折算关系:
Jeq = JL / i²
其中 i 为减速比(电机转速/负载转速)。 例如使用 1:5 减速机,负载惯量折算后仅为原来的 1/25。
这就是为什么“加减速机可以改善惯量匹配”的原因。
丝杠系统将旋转运动转化为直线运动,惯量折算公式:
JL = (m × p²) / (2π)²
其中 m 为负载质量(kg),p 为丝杠导程(m/rev)。
例如:负载质量 20 kg,导程 0.01 m/rev,折算惯量:
JL = 20 × (0.01²)/(2π)² = 5.07×10⁻⁵ kg·m²
假设主动轮半径 r,皮带传动比 i,则:
JL = (m × r²) / i²
若有多个滚轮或旋转件,应将各自惯量相加。
n = v / p × 60 = 0.05 / 0.01 × 60 = 300 rpm
JL = (m × p²)/(2π)² = 10 × 0.01² / (2π)² = 2.53×10⁻⁵ kg·m²
α = (2πn / 60) / ta = (2π×300/60)/0.1 = 314 rad/s²
Ta = J × α = 2.53×10⁻⁵ × 314 = 0.0079 N·m
TL = (m × g × p)/(2π) = (10×9.81×0.01)/(6.283) = 0.156 N·m
Ttotal = TL + Ta = 0.163 N·m
选型时考虑安全系数(约 2~3 倍),电机需具备约 0.4 N·m 额定力矩。 查样本:如 100W 伺服电机(0.32 N·m / 峰值 0.95 N·m)即可满足。
理想目标:系统在设定加减速时间内,达到期望速度,同时保持过冲小于 10%。
经验规则:
一条完整的伺服系统功率流如下:
控制器 → 驱动器 → 电机转矩 → 减速机构 → 负载
在每一级,需关注以下要点:
| 环节 | 关注点 |
|---|---|
| 驱动器 | 额定电流、过载能力(2–3 倍) |
| 电机 | 额定力矩、峰值力矩、转动惯量 |
| 减速机 | 减速比、效率、背隙、惯量折算 |
| 联轴器 | 柔性、共振、对中精度 |
| 负载 | 质量、摩擦力、加速度要求 |
目标:使电机输出力矩既能满足启动与负载需求,又不过度冗余导致振动或成本上升。
在《伺服基础课 第 4 讲》中,我们将讲解:
从力矩与惯量开始,你已经站在了伺服选型的核心门槛,下一课我们走进“调得稳”的世界。
将本文的Word文档下载到电脑
推荐度: